

Course Name: Combustion Theory and Emissions Reduction Class

Course Length: Classroom lecture with problem solving exercises – 4.5 days

Prerequisites: Basic to mid-level knowledge of reciprocating internal combustion

engines.

Target Audience: Rotating equipment engineers, managers, and technical personnel

responsible for the safe, reliable, efficient, and emission compliant

operation of reciprocating internal combustion engines.

Goal: Provide advanced knowledge of combustion in reciprocating internal

combustion engines and how it is affected by operations and external

factors.

CLASSROOM ACTIVITIES/TOPICS	SCHEDULE
SECTION ONE – Day 1 (8:00 am – 4:30 pm)	
COOPER COMPANY INTRODUCTION	8:00 am – 9:00 am
• Introduction to Cooper Machinery Services	
Review the product and service offerings	
Chapter 1: COURSE INTRODUCTION	9:00 am – 10:00 am
• Introduction to the eight (8) changes that affect the operation and performance of reciprocating internal combustion engines:	
• Speed – Chapter 4	
Torque – Chapter 5	
 Air/fuel ratio— Chapter 6 	
Detonation- Chapter 7	
 Ignition timing— Chapter 8 	
Misfire- Chapter 9	
Dead Cylinder— Chapter 9	
 Pre-Ignition – Chapter 10 	
• Review the engine models of the class participants.	
Session Break – 15 Minutes	10:00 am – 10:15 am
Chapter 2: FUNDAMENTALS OF RECIPROCATING INTERNAL COMBUSTION ENGINES (RICE)	10:15 am – 11:00 am
• Describe the cycle of events for a reciprocating internal combustion engine: Power, Exhaust, Intake, and Compression.	
• Describe and understand the difference between 2-stroke cycle or 4-stroke cycle operation and performance.	
Chapter 3: ENGINE AND COMPRESSOR ANALYSIS	11:00 am – 12:00 pm
• Understand the use and capabilities of portable engine and compressor analyzers to diagnose the equipment performance:	

Verify normal operating conditions	
Compare actual current information to empirically proven data	
 Prevent minor mechanical problems from becoming serious even catastrophic 	
failures	
Lunch Break – 1 Hour	12:00 pm – 1:00 pm
Chapter 3: ENGINE AND COMPRESSOR ANALYSIS – Continued	1:00 pm – 2:30 pm
Session Break – 15 Minutes	2:30 pm – 2:45 pm
Chapter 3: ENGINE AND COMPRESSOR ANALYSIS – Continued	2:45 pm – 4:00 pm
COOPER SOLUTIONS: EQUIPMENT ANALYSIS	4:00 pm – 4:30 pm
• Equipment Analytics: Periodical in-person or remote data collection, performance analysis, and diagnostic reporting.	
• Remote Condition Monitoring: Continuous data collection and analysis with diagnostic and maintenance recommendations	
SECTION ONE – Day 2 (8:00 am – 4:30 pm)	
Chapter 4: HORSEPOWER	8:00 am – 10:00 am
• Define horsepower as work performed over a unit of time (PLAN/33,000)	
• Torque = Mean Effective Pressure (MEP)	
• Explain the following:	
 The first law of thermodynamics - conservation of energy 	
 The ways to change horsepower on a compressor 	
The effects of clearance on the compressor cycle	
 Torque and the three things that the magnitude of torque depends on 	
Bowdoin's law	
Session Break – 15 Minutes	10:00 am – 10:15 am
Chapter 5: ENGINE BALANCE	10:15 am – 11:30 am
Describe components that make up an engine health report	
• Explain the important factors affecting engine balance including pressures, timing, and temperatures of each cylinder.	
Understand critical problems associated with an engine balancing	
Explain the impact of standing waves in the fuel manifold	
Understand the advantages to balancing engines	
COOPER SOLUTIONS: MAINTENANCE AND TROUBLESHOOTING	11:30 am – 12:00 pm
OEM certified, quality parts and kits	
OEM certified maintenance personnel and field service representatives	
World class engineering and troubleshooting expertise	
Lunch Break – 1 Hour	12:00 pm – 1:00 pm

Chapter 6: AIR/FUEL RATIO - THE PARABOLIC BURNING CURVE	1:00 pm – 2:30 pm
Describe the fire triangle of combustion	
 Understand the common air/fuel ratio control methodologies 	
• Understand the differences in combustion between:	
Rich-burn engines	
Lean-burn engines	
Clean or ultra lean-burn engines	
• Understand the impact of air/fuel ratio based on fuel gas BTU, flame front velocity, peak firing pressure, and peak firing angle.	
Session Break – 15 Minutes	2:30 pm – 2:45 pm
Chapter 6: AIR/FUEL RATIO - THE PARABOLIC BURNING CURVE — Continued	2:45 pm – 4:30 pm
SECTION ONE – Day 3 (8:00 am – 4:30 pm)	
Chapter 7: DETONATION	8:00 am – 9:00 am
• Define detonation, why it happens and how it affects the engine	
Explain deflagration and detonation	
Understand the parabolic burning curve	
Chapter 8: IGNITION TIMING	9:00 am – 10:00 am
• Explain ignition timing and how it is used in combustion control	
Understand the effects of changing ignition timing on combustion	
Session Break – 15 Minutes	10:00 am – 10:15 am
Chapter 9: MISFIRES AND DEAD CYLINDERS	10:15 am – 11:15 am
• Define misfires and dead cylinders as they relate to combustion	
 Understand the causes and effects of misfires and dead cylinders on engine performance, reliability, and emission performance 	
Chapter 10: PRE-IGNITION	11:15 am – 12:00 pm
Define pre-ignition	
• Explain the causes and detrimental effects of detonation and pre-ignition	
Lunch Break – 1 Hour	12:00 pm – 1:00 pm
Chapter 11: CHANGING SPEED	1:00 pm – 2:00 pm
• Explains the impact of increasing / decreasing speed on engine combustion and performance.	
 Impact on station conditions (compressor pressures and flow) 	
Impact on engine performance and combustion	
Chapter 12: EMISSIONS	2:00 pm – 2:30 pm
• Explain emission formation in reciprocating engine combustion:	
 Nitrous oxides (NO_x) and Carbon emissions (CO, H_xC_x, CO₂, CH₂O) 	

Explain emission formation rate versus combustion temperatures	
Understand relationship of NOx and Carbon Emissions to the Parabolic Burning Curve	
 Understand the relationship of Oil Nitration and Oxidation to air/fuel ratio 	
Explain the role of Oxygen and Formaldehyde in emission	
Understand application and use of catalytic converters in emissions reduction	
Session Break – 15 Minutes	2:30 pm – 2:45 pm
Chapter 12: EMISSIONS – Continued	2:45 pm – 3:30 pm
COOPER SOLUTIONS: EMISSIONS SOLUTIONS & REPLACEMENT ECONOMICS	3:30 pm – 4:30 pm
 Emissions challenges for reciprocating engines (NOx, CO2, and methane) 	
• Economic and technical analysis of emissions upgrades versus engine replacement.	
 Slow Speed Emissions Upgrade: Cooper-Bessemer®, Clark Enterprise®, Ingersoll Rand, Worthington slow speed engines solutions. 	
• Ajax integral gas compressors upgrades: Solutions to increase Ajax power, reliability and emissions.	
Superior engines upgrade solutions: Emissions upgrade solutions	
SECTION TWO: COMBUSTION APPLICATION & PROBLEM SOLVING – Day 4	
(8:00 am – 4:30 pm)	
Chapter 13: AUTOMATION AND CONTROLS	8:00 am – 9:00 pm
 Describe the critical control systems that impact combustion and performance. 	
Explain constant torque variable speed verse constant speed variable torque	
 Describe supporting automation and controls related: 	
Alarms and Safety Shutdowns	
 Operating Parameters (temperature, pressure, flow, vibration) 	
Start-up, Stop and Loading Sequences	
Speed Control	
Torque Control	
 Compressor Load Control (Recycle Valves, Suction Control Valve, Unloading Devices and Schedule) 	
Ignition Timing Control	
Air/Fuel Ratio Control	
ENGINE COMBUSTION APPLICATION & PROBLEM SOLVING (Part I)	9:00 am – 10:00 am
 Review changes to the unit – engine and compressor in relation to: 	
• Load	
• Speed	
Air/Fuel Ratio	
Ignition Timing	
• Ignition rining	
Misfires	

Pre-Ignition	
Detonation	
Solve and predict outcome for 12 most common problems and scenarios	
Session Break – 15 Minutes	10:00 am – 10:15 am
• Solve and predict outcome for 12 most common problems and scenarios (continued)	
Lunch Break – 1 Hour	12:00 pm – 1:00 pm
• Solve and predict outcome for 12 most common problems and scenarios (continued)	1:00 pm – 2:30 pm
Session Break – 15 Minutes	2:30 pm – 2:45 pm
• Solve and predict outcome for 12 most common problems and scenarios (continued)	2:45 pm – 4:30 pm
SECTION TWO: COMBUSTION APPLICATION & PROBLEM SOLVING – Day 5	
(8:00 am – 12:30 pm)	
ENGINE COMBUSTION APPLICATION & PROBLEM SOLVING (Part II)	8:00 am – 10:00 am
• Identify client problems and situations	
Solve and predict outcome to client problems.	
Session Break – 15 Minutes	10:00 am – 10:15 am
Solve and predict outcome to client problems (continued)	10:15 am – 11:30 am
Summary of the Week and Final Comments / Cooper Solutions	11:30 am – 12:00 pm